在人体中,眼轮匝肌的收缩会降低进入眼睛的光线强度,因此,研究人员利用可以由浅蓝色变为深蓝色并同步降低透光率的电致变色器件作为执行器来模拟眼轮匝肌的收缩。利用以上方法构建的人工角膜反射弧与天然角膜一样具有保护、触觉感知和光折射等功能,还可以模拟眼轮匝肌的收缩。其比人体天然角膜和不能感知触觉刺激的传统人工角膜更加智能。因此,研究人员将这种人工角膜反射弧命名为“具有触觉的人工智能角膜”。
图2 具有触觉的人工智能角膜
人体天然角膜不具备光感知和随光强度变化而调节的功能。当光通过角膜进入眼睛时,会被视网膜上的光感受器(视杆细胞和视锥细胞)检测到,然后光感受器将光信号转换为动作电位,并通过视神经传递到大脑皮层。为了增加这种具有触觉的人工智能角膜的智能度,研究人员通过利用光传感器-振荡电路代替原有的振动传感器-振荡电路赋予了其光感知能力,从而使得这种人工智能角膜具备了感官扩展的功能,获得了对外界光刺激的感知和响应能力。
图3 人工智能角膜的感官扩展和交互功能
最后,作为概念验证,研究人员给机器人装配了人工智能角膜。验证结果显示,在弱光下,这种人工智能角膜呈高透光率的浅蓝色;在强光下,其会变为低透光率的深蓝色。总而言之,该研究开发的人工智能角膜与人类神经系统在逻辑上兼容,具备人类天然角膜的保护、触觉感知和光折射功能,并扩展了人类天然角膜不具备的光感知和交互功能。
展望未来,该研究开发的人工智能角膜在生物相容性、稳定性、尺寸和集成度等方面还需要进行进一步的优化。经过开发和优化,这种人工智能角膜可以移植到等待医疗干预的角膜盲患者体中,从而缓解供体角膜的短缺。因此,优化后的成熟人工智能角膜在神经修复和视觉康复方面具有潜在的应用前景。
审核编辑:刘清
文章版权声明:除非注明,否则均为本站原创文章,转载或复制请以超链接形式并注明出处